Singular integral characterization of nonisotropic generalized BMO spaces

نویسنده

  • Raquel Crescimbeni
چکیده

We extend a result of Coifman and Dahlberg [Singular integral characterizations of nonisotropic H spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characterization of H spaces by singular integrals of R with a nonisotropic metric. Then we apply it to produce singular integral versions of generalized BMO spaces. More precisely, if Tλ is the family of dilations in R induced by a matrix with a nonnegative eigenvalue, then there exist 2n singular integral operators homogeneous with respect to the dilations Tλ that characterize BMOφ under a natural condition on φ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 9 A pr 2 00 8 SPACES H 1 AND BMO ON ax + b – GROUPS

Abstract. Let S be the group R ⋉ R endowed with the Riemannian symmetric space metric d and the right Haar measure ρ. The space (S, d, ρ) is a Lie group of exponential growth. In this paper we define an Hardy space H and a BMO space in this context. We prove that the functions in BMO satisfy the John–Nirenberg inequality and that BMO may be identified with the dual space of H. We then prove tha...

متن کامل

Commutators of the Hardy-Littlewood Maximal Operator with BMO Symbols on Spaces of Homogeneous Type

Weighted L for p ∈ 1,∞ and weak-type endpoint estimates with general weights are established for commutators of the Hardy-Littlewood maximal operator with BMO symbols on spaces of homogeneous type. As an application, a weighted weak-type endpoint estimate is proved for maximal operators associated with commutators of singular integral operators with BMO symbols on spaces of homogeneous type. Al...

متن کامل

A’priori Estimates and Precise Regularity for Parabolic Systems with Discontinuous Data

We deal with linear parabolic (in sense of Petrovskii) systems of order 2b with discontinuous principal coefficients. A’priori estimates in Sobolev and Sobolev– Morrey spaces are proved for the strong solutions by means of potential analysis and boundedness of certain singular integral operators with kernels of mixed homogeneity. As a byproduct, precise characterization of the Morrey, BMO and H...

متن کامل

Embedding Theorems into Lipschitz and Bmo Spaces and Applications to Quasilinear Subelliptic Differential Equations

This paper proves Harnack’s inequality for solutions to a class of quasilinear subelliptic differential equations. The proof relies on various embedding theorems into nonisotropic Lipschitz and BMO spaces associated with the vector fields X1, . . . , Xm satisfying Hörmander’s condition. The nonlinear subelliptic equations under study include the important p-sub-Laplacian equation, e.g.,

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010